Made in the USA
"Power Quality is Our Business"
P.O. Box 330607

Ft. Worth, TX 76163
Phone: 817.483.8497
Fax: 817.572.2242
www.sinetamer.com
The SineTamer ${ }^{\ominus}$ RM series of units blends outstanding high-energy "impulse" suppression with excellent "ring-wave" transient protection with our Frequency Attenuation Network ${ }^{\circledR}$. This durable device is intended for general purpose and sensitive/critical load applications. The RM-STxx is typically installed at small to mediem service entrances, distribution and sub-distribution panels. Please discuss specific installations with your local representative. Compact size and non-metallic enclosure design also allow it to be installed directly inside electrical panels and individual equipment disconnects. The internal installation provides the absolute shortest possible lead length and optimum performance.
This economical device has features that are not available in devices costing many times its price. Its compact size makes installation a breeze. Maintenance Free operation and 15 Year Unlimited Free Replacement Warranty provide peace of mind.

GENERAL	
Description:	Parallel connected, transient voltage surge suppressor device utilizing both high-energy handling and sine-wave tracking circuitry for virtual elimination of impulse and ring wave type transients. (actively tracking the AC sine wave)
Application:	Designed for use at ANSI/IEEE Categories C, B and A with susceptibility up to medium exposure levels. Designed to protect sensitive/critical loads fed from distribution panels, branch panels and/or individual equipment panels.
Warranty:	15 Years Unlimited Free Replacement
Product Qualifications:	Listed to ANSI/UL 1449-2006 (3 $3^{\text {rd }}$ Edition) by UL. ML record: E363345; UL1283* and CE Compliant (* Type 2 SPDs only) ISO 9001:2008, ANSI C62.72-2007, IEC 61643-1 Class 2\&3
MECHANICAL	
Enclosure:	High strength ABS Plastic, NEMA 1 (IP67) rated enclosure.
Mounting:	3/4" conduit fitting (internally threaded) and external mounting feet.
Connection Method:	\#10 stranded wire.
Shipping Weight:	$\approx 6 \mathrm{lbs} / / 2.7 \mathrm{~kg}$

ELECTRICAL

Circuit Design:

Protection Modes: Input Power Frequency: EMI/RFI Noise Attenuation: Capacitance:
Circuit Diagnostics:
Temperature Rating:
Humidity
Energy Consumption:
Fusing:
kAIC Rating:
Options:

Parallel connected, internally fused, hybrid design incorporating all mode protection, and utilizing our encapsulated design to provide improved durability. All suppression circuits are encapsulated in our exclusive compound to assure long component life and complete protection from the environment and/or vibration.
L-N, L-L (Normal Mode), and L-G, N-G (Common Mode). (Seven discrete modes) $50-60 \mathrm{~Hz}$ constant
30 dB Max. from 1 kHz to 10 MHz
Up to 3.5 uF Max.
Super Bright LED, 1 per phase, normally on.
Up to $80^{\circ} \mathrm{C}$
0-99\% Non-condensing
12 mA Total (Approximately 4mA per LED)
Component Level Thermal and Board Level Current Fusing
200 kAIC when installed according to installation instructions
-V Remove Frequency Attenuation; -S Surge Counter; -C Dry Relay Contacts, Other options available. Call!

Because we are constantly seeking to improve our products, specifications are subject to change at any time. © 2013 ECS International Inc. Specification Last Changed 07/13 RM-ST60.doc

MEASURED LIMITING VOLTAGE PERFORMANCE AND ELECTRICAL SPECIFICATIONS							
Model	Circuit Type	MCOV	Peak Surge Current (Amps) Per Mode/Phase	Mode	ANSIIIEEE C62.41 \& C62.45 Let-Through Voltage Test Results		
					A1 2kV, 67A 100KHz Ring Wave 270° Phase Angle	Cat B3/C1 ($6 \mathrm{kV}, 3 \mathrm{kA}$) 90° Phase Angle	C3 20kV, 10kA Impulse Wave 90° Phase Angle
RM-STxx1P1	120V, Single Ø (2 wire + ground)	$\begin{aligned} & 150 \mathrm{~L}-\mathrm{N} \\ & 150 \mathrm{~L}-\mathrm{G} \\ & 150 \mathrm{~N}-\mathrm{G} \\ & \hline \end{aligned}$	See Chart Below	$\begin{aligned} & \hline \text { L-N } \\ & \text { L-G } \\ & \mathrm{N}-\mathrm{G} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 85 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 377 \\ & 380 \\ & 541 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 925 \\ & 1200 \\ & 1200 \\ & \hline \end{aligned}$
RM -STxx1S1	120/240V, Split Ø (3 wire + ground)	$\begin{aligned} & \hline 300 \mathrm{~L}-\mathrm{L} \\ & 150 \mathrm{~L}-\mathrm{N} \\ & 150 \mathrm{~L}-\mathrm{G} \\ & 150 \mathrm{~N}-\mathrm{G} \\ & \hline \end{aligned}$	See Chart Below	$\begin{aligned} & \hline \text { L-L } \\ & \text { L-N } \\ & \text { L-G } \\ & \text { N-G } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 75 \\ & 85 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 576 \\ & 377 \\ & 380 \\ & 541 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1200 \\ 914 \\ 1200 \\ 1200 \\ \hline \end{gathered}$
RM-STxx3Y1	120/208V, 3ØY (4 wire + ground)	$\begin{aligned} & \hline 300 \mathrm{~L}-\mathrm{L} \\ & 150 \mathrm{~L}-\mathrm{N} \\ & 150 \mathrm{~L}-\mathrm{G} \\ & 150 \mathrm{~N}-\mathrm{G} \\ & \hline \end{aligned}$	See Chart Below	$\begin{aligned} & \text { L-L } \\ & \text { L-N } \\ & \text { L-G } \\ & \text { N-G } \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 75 \\ & 85 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 576 \\ & 377 \\ & 380 \\ & 541 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1200 \\ 914 \\ 1200 \\ 1200 \\ \hline \end{gathered}$
RM -STxx1P2	240V, Single Ø (2 wire + ground)	$\begin{aligned} & 320 \mathrm{~L}-\mathrm{N} \\ & 320 \mathrm{~L}-\mathrm{G} \\ & 320 \mathrm{~N}-\mathrm{G} \end{aligned}$	See Chart Below	$\begin{aligned} & \hline \text { L-N } \\ & \text { L-G } \\ & \text { N-G } \\ & \hline \end{aligned}$	96 100 100	$\begin{aligned} & 560 \\ & 588 \\ & 941 \\ & \hline \end{aligned}$	$\begin{aligned} & 1050 \\ & 1290 \\ & 1290 \\ & \hline \end{aligned}$
RM -STxx3Y2	$\begin{gathered} \text { 277/480V, } 3 \emptyset Y \\ 220 / 380 \mathrm{~V}, 3 \emptyset \mathrm{Y} \\ \text { (4 wire + ground) } \end{gathered}$	$\begin{aligned} & 550 \mathrm{~L}-\mathrm{L} \\ & 320 \mathrm{~L}-\mathrm{N} \\ & 320 \mathrm{~L}-\mathrm{G} \\ & 320 \mathrm{~N}-\mathrm{G} \\ & \hline \end{aligned}$	See Chart Below	$\begin{aligned} & \hline \text { L-L } \\ & \text { L-N } \\ & \text { L-G } \\ & \text { N-G } \\ & \hline \end{aligned}$	$\begin{gathered} 135 \\ 96 \\ 100 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 805 \\ & 560 \\ & 588 \\ & 941 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 \\ & 1050 \\ & 1400 \\ & 1575 \\ & \hline \end{aligned}$
RM -STxx3N2	$\begin{gathered} 240 \mathrm{~V}, 3 \varnothing \Delta \\ (3 \text { wire + ground) }) \end{gathered}$	$\begin{aligned} & \hline 320 \mathrm{~L}-\mathrm{L} \\ & 320 \mathrm{~L}-\mathrm{G} \\ & \hline \end{aligned}$	See Chart Below	$\begin{aligned} & \text { L-L } \\ & \text { L-G } \\ & \hline \end{aligned}$	96	$\begin{aligned} & 576 \\ & 497 \\ & \hline \end{aligned}$	$\begin{aligned} & 1275 \\ & 1275 \\ & \hline \end{aligned}$
RM -STxx3N4	$\begin{gathered} 380 \mathrm{~V}, 3 \varnothing \Delta \\ 480 \mathrm{~V}, 3 \varnothing \Delta \\ (3 \text { wire + ground) }) \end{gathered}$	$\begin{aligned} & 550 \mathrm{~L}-\mathrm{L} \\ & 550 \mathrm{~L}-\mathrm{G} \end{aligned}$	See Chart Below	$\begin{aligned} & \text { L-L } \\ & \text { L-G } \end{aligned}$	140	$\begin{aligned} & 792 \\ & 792 \end{aligned}$	$\begin{aligned} & 1375 \\ & 1375 \end{aligned}$

Let-Through Voltage Test Environment: Positive Polarity. Time base=1ms. All voltages are peak ($\pm 10 \%$). Surge voltages are measured from the insertion point of surge on the sine wave to the peak of the surge. All tests are Dynamic (voltage applied) except N-G which is static (no voltage applied). All tests were performed with 6 inches of lead length outside the device enclosure which simulates actual "as installed" performance.
Single-pulse, surge current capacities of $200,000 \mathrm{amps}$ or less are determined by single-unit testing of all components within each mode. Present industry test equipment limitations require testing of individual components or sub-assemblies within a mode for single-pulse, surge current capacities over 200,000 amps.

Peak Surge Current per Mode/Phase for each Model. See below for $\mathbf{x x}=$	
60	$20,000 / 40,000$
120	$40,000 / 80,000$
180	$60,000 / 120,000$

Because we are constantly seeking to improve our products, specifications are subject to change at any time.
© 2013 ECS International Inc. Specification Last Changed 07/13 RM-ST60.doc

